Footprints of inhibition in the response of cortical delay-tuned neurons of bats

Author:

Hechavarría Julio C.1,Kössl Manfred1

Affiliation:

1. Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt, Germany

Abstract

Responses of echo-delay-tuned neurons that encode target distance were investigated in the dorsal auditory cortex of anesthetized short-tailed fruit bats ( Carollia perspicillata). This species echolocates using short downward frequency-modulated (FM) biosonar signals. In response to FM sweeps of increasing level, 60 out of 131 studied neurons (47%) displayed a “paradoxical latency shift,” i.e., longer response latency to loud sounds and shorter latency to faint sounds. In addition, a disproportionately large number of neurons (80%) displayed nonmonotonic responses, i.e., weaker responses to loud sounds and stronger responses to faint sounds. We speculate that the observed paradoxical latency shift and nonmonotonic responses are extracellular footprints of inhibitory processes evoked by loud sounds and that they could represent a specialization for the processing of the emitted loud biosonar pulse. Supporting this idea is the fact that all studied neurons displayed strong response suppression when an artificial loud pulse and a faint echo were presented together at a nonoptimal delay. In 24 neurons, iontophoresis of bicuculline (an antagonist of A-type γ-aminobutyric acid receptors) did not remove inhibitory footprints but did increase the overall spike output, and in some cases it also modified the response bandwidth and shifted the neuron's “best delay.” We suggest that inhibition could play a dual role in shaping delay tuning in different auditory stations. Below the cortex it participates in delay-tuning implementation and leaves a footprint that is measurable in cortical responses, while in the cortex it provides a substrate for an in situ control of neuronal selectivity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3