Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus

Author:

Dear S. P.1,Fritz J.1,Haresign T.1,Ferragamo M.1,Simmons J. A.1

Affiliation:

1. Department of Neuroscience, Brown University, Providence, Rhode Island02912.

Abstract

1. In Eptesicus the auditory cortex, as defined by electrical activity recorded from microelectrodes in response to tone bursts, FM sweeps, and combinations of FM sweeps, encompasses an average cortical surface area of 5.7 mm2. This area is large with respect to the total cortical surface area and reflects the importance of auditory processing to this species of bat. 2. The predominant pattern of organization in response to tone bursts observed in each cortex is tonotopic, with three discernible divisions revealed by our data. However, although cortical best-frequency (BF) maps from most of the individual bats are similar, no two maps are identical. The largest division contains an average of 84% of the auditory cortical surface area, with BF tonotopically mapped from high to low along the anteroposterior axis and is part of the primary auditory cortex. The medium division encompasses an average of 13% of the auditory cortical surface area, with highly variable BF organization across bats. The third region is the smallest, with an average of only 3% of auditory cortical surface area and is located at the anterolateral edge of the cortex. This region is marked by a reversal of the tonotopic axis and a restriction in the range of BFs as compared with the larger, tonotopically organized division. 3. A population of cortical neurons was found (n = 39) in which each neuron exhibited two BF threshold minima (BF1 and BF2) in response to tone bursts. These neurons thus have multipeaked frequency threshold tuning curves. In Eptesicus the majority of multipeaked frequency-tuned neurons (n = 27) have threshold minima at frequencies that correspond to a harmonic ratio of three-to-one. In contrast, the majority of multipeaked neurons in cats have threshold minima at frequencies in a ratio of three-to-two. A three-to-one harmonic ratio corresponds to the "spectral notches" produced by interference between overlapping echoes from multiple reflective surfaces in complex sonar targets. Behavioral experiments have demonstrated the ability of Eptesicus to use spectral interference notches for perceiving target shape, and this subpopulation of multipeaked frequency-tuned neurons may be involved in coding of spectral notches. 4. The auditory cortex contains delay-tuned neurons that encode target range (n = 99). Most delay-tuned neurons respond poorly to tones or individual FM sweeps and require combinations of FM sweeps. They are combination sensitive and delay tuned.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3