Perception of Self-Motion From Peripheral Optokinetic Stimulation Suppresses Visual Evoked Responses to Central Stimuli

Author:

Thilo Kai V.1,Kleinschmidt Andreas2,Gresty Michael A.3

Affiliation:

1. University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom

2. Department of Neurology, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany

3. Medical Research Council Spatial Disorientation Group, Academic Department of Neuro-Otology, Division of Neuroscience and Psychological Medicine, Imperial College London, Charing Cross Campus, London W6 8RF, United Kingdom

Abstract

In a previous functional neuroimaging study we found that early visual areas deactivated when a rotating optical flow stimulus elicited the illusion of self-motion (vection) compared with when it was perceived as a moving object. Here, we investigated whether electrical cortical responses to an independent central visual probe stimulus change as a function of whether optical flow stimulation in the periphery induces the illusion of self-motion or not. Visual-evoked potentials (VEPs) were obtained in response to pattern-reversals in the central visual field in the presence of a constant peripheral large-field optokinetic stimulus that rotated around the naso-occipital axis and induced intermittent sensations of vection. As control, VEPs were also recorded during a stationary peripheral stimulus and showed no difference than those obtained during optokinetic stimulation. The VEPs during constant peripheral stimulation were then divided into two groups according to the time spans where the subjects reported object- or self-motion, respectively. The N70 VEP component showed a significant amplitude reduction when, due to the peripheral stimulus, subjects experienced self-motion compared to when the peripheral stimulus was perceived as object-motion. This finding supplements and corroborates our recent evidence from functional neuroimaging that early visual cortex deactivates when a visual flow stimulus elicits the illusion of self-motion compared with when the same sensory input is interpreted as object-motion. This dampened responsiveness might reflect a redistribution of sensorial and attentional resources when the monitoring of self-motion relies on a sustained and veridical processing of optic flow and may be compromised by other sources of visual input.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3