Murine colonic mucosa hyperproliferation. I. Elevated CFTR expression and enhanced cAMP-dependent Cl−secretion

Author:

Umar Shahid1,Scott Jason1,Sellin Joseph H.1,Dubinsky William P.1,Morris Andrew P.1

Affiliation:

1. Department of Integrative Biology, Pharmacology and Physiology, and Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, The University of Texas Health Science Center at Houston, Medical School, Houston, Texas 77030

Abstract

Fluid transport in the large intestine is mediated by the cystic fibrosis gene product and cAMP-dependent anion channel cystic fibrosis transmembrane conductance regulator (CFTR). cAMP-mediated Clsecretion by gastrointestinal cell lines in vitro has been positively correlated with the insertion of CFTR into the apical membrane of differentiated senescent colonocytes and negatively correlated with the failure of CFTR to insert into the plasma membrane of their undifferentiated proliferating counterparts. In native tissues, this relationship remains unresolved. We demonstrate, in a transmissible murine colonic hyperplasia (TMCH) model, that (8-fold) colonocyte proliferation was accompanied by increased cellular CFTR mRNA and protein expression (8.3- and 2.4-fold, respectively) and enhanced mucosal cAMP-dependent Clsecretion (2.3-fold). By immunofluorescence microscopy, cellular CFTR expression was restricted to the apical pole of cells at the base of the epithelial crypt. In contrast, increased cellular proliferation in vivo led to increases in both the cellular level and the total number of cells expressing this anion channel, with cellular CFTR staining extending into the crypt neck region. Hyperproliferating colonocytes accumulated large amounts of CFTR in apically oriented subcellular perinuclear compartments. This novel mode of CFTR regulation may explain why high endogenous levels of cellular CFTR mRNA and protein within the TMCH epithelium were not matched with larger increases in transmucosal CFTR Clcurrent.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3