Guanylate cyclase C limits systemic dissemination of a murine enteric pathogen

Author:

Mann Elizabeth A,Harmel-Laws Eleana,Cohen Mitchell B,Steinbrecher Kris A

Abstract

Abstract Background Guanylate Cyclase C (GC-C) is an apically-oriented transmembrane receptor that is expressed on epithelial cells of the intestine. Activation of GC-C by the endogenous ligands guanylin or uroguanylin elevates intracellular cGMP and is implicated in intestinal ion secretion, cell proliferation, apoptosis, intestinal barrier function, as well as the susceptibility of the intestine to inflammation. Our aim was to determine if GC-C is required for host defense during infection by the murine enteric pathogen Citrobacter rodentium of the family Enterobacteriacea. Methods GC-C+/+ control mice or those having GC-C genetically ablated (GC-C−/−) were administered C. rodentium by orogastric gavage and analyzed at multiple time points up to post-infection day 20. Commensal bacteria were characterized in uninfected GC-C+/+ and GC-C−/− mice using 16S rRNA PCR analysis. Results GC-C−/− mice had an increase in C. rodentium bacterial load in stool relative to GC-C+/+. C. rodentium infection strongly decreased guanylin expression in GC-C+/+ mice and, to an even greater degree, in GC-C−/− animals. Fluorescent tracer studies indicated that mice lacking GC-C, unlike GC-C+/+ animals, had a substantial loss of intestinal barrier function early in the course of infection. Epithelial cell apoptosis was significantly increased in GC-C−/− mice following 10 days of infection and this was associated with increased frequency and numbers of C. rodentium translocation out of the intestine. Infection led to significant liver histopathology in GC-C−/− mice as well as lymphocyte infiltration and elevated cytokine and chemokine expression. Relative to naïve GC-C+/+ mice, the commensal microflora load in uninfected GC-C−/− mice was decreased and bacterial composition was imbalanced and included outgrowth of the Enterobacteriacea family. Conclusions This work demonstrates the novel finding that GC-C signaling is an essential component of host defense during murine enteric infection by reducing bacterial load and preventing systemic dissemination of attaching/effacing-lesion forming bacterial pathogens such as C. rodentium.

Publisher

Springer Science and Business Media LLC

Subject

Gastroenterology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3