Disparity-Tuning Characteristics of Neuronal Responses to Dynamic Random-Dot Stereograms in Macaque Visual Area V4

Author:

Tanabe Seiji,Doi Takahiro,Umeda Kazumasa,Fujita Ichiro

Abstract

Stereo processing begins in the striate cortex and involves several extrastriate visual areas. We quantitatively analyzed the disparity-tuning characteristics of neurons in area V4 of awake, fixating monkeys. Approximately half of the analyzed V4 cells were tuned for horizontal binocular disparities embedded in dynamic random-dot stereograms (RDSs). Their response preferences were strongly biased for crossed disparities. To characterize the disparity-tuning profile, we fitted a Gabor function to the disparity-tuning data. The distribution of V4 cells showed a single dense cluster in a joint parameter space of the center and the phase parameters of the fitted Gabor function; most V4 neurons were maximally sensitive to fine stereoscopic depth increments near zero disparity. Comparing single-cell responses with background multiunit responses at the same sites showed that disparity-sensitive cells were clustered within V4 and that nearby cells possessed similar preferred disparities. Consistent with a recent report by Hegdé and Van Essen, the disparity tuning for an RDS drastically differed from that for a solid-figure stereogram (SFS). Disparity-tuning curves were generally broader for SFSs than for RDSs, and there was no correlation between the fitted Gabor functions' amplitudes, widths, or peaks for the two types of stereograms. The differences were partially attributable to shifts in the monocular images of an SFS. Our results suggest that the representation of stereoscopic depth in V4 is suited for detecting fine structural features protruding from a background. The representation is not generic and differs when the stimulus is broad-band noise or a solid figure.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3