Affiliation:
1. Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106; and
2. Department of Neurological Surgery, University of California, San Francisco, California 94143
Abstract
Nonsynaptic mechanisms exert a powerful influence on seizure threshold. It is well-established that nonsynaptic epileptiform activity can be induced in hippocampal slices by reducing extracellular Ca2+ concentration. We show here that nonsynaptic epileptiform activity can be readily induced in vitro in normal (2 mM) Ca2+ levels. Those conditions sufficient for nonsynaptic epileptogenesis in the CA1 region were determined by pharmacologically mimicking the effects of Ca2+ reduction in normal Ca2+ levels. Increasing neuronal excitability, by removing extracellular Mg2+ and increasing extracellular K+ (6–15 mM), induced epileptiform activity that was suppressed by postsynaptic receptor antagonists [d-(−)-2-amino-5-phosphonopentanoic acid, picrotoxin, and 6,7-dinitroquinoxaline-2,3-dione] and was therefore synaptic in nature. Similarly, epileptiform activity induced when neuronal excitability was increased in the presence of KCaantagonists (verruculogen, charybdotoxin, norepinephrine, tetraethylammonium salt, and Ba2+) was found to be synaptic in nature. Decreases in osmolarity also failed to induce nonsynaptic epileptiform activity in the CA1 region. However, increasing neuronal excitability (by removing extracellular Mg2+ and increasing extracellular K+) in the presence of Cd2+, a nonselective Ca2+channel antagonist, or veratridine, a persistent sodium conductance enhancer, induced spontaneous nonsynaptic epileptiform activity in vitro. Both novel models were characterized using intracellular and ion-selective electrodes. The results of this study suggest that reducing extracellular Ca2+ facilitates bursting by increasing neuronal excitability and inhibiting Ca2+ influx, which might, in turn, enhance a persistent sodium conductance. Furthermore, these data show that nonsynaptic mechanisms can contribute to epileptiform activity in normal Ca2+ levels.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience