Properties of a Calcium-Activated K+ Current on Interneurons in the Developing Rat Hippocampus

Author:

Aoki Takuya1,Baraban Scott C.1

Affiliation:

1. Departments of Pediatrics and Neuroscience, Case Western Reserve University, Cleveland, Ohio 44106

Abstract

Calcium-activated potassium currents have an essential role in regulating excitability in a variety of neurons. Although it is well established that mature CA1 pyramidal neurons possess a Ca2+-activated K+ conductance ( I K(Ca)) with early and late components, modulation by various endogenous neurotransmitters, and sensitivity to K+ channel toxins, the properties of I K(Ca) on hippocampal interneurons (or immature CA1 pyramidal neurons) are relatively unknown. To address this problem, whole-cell voltage-clamp recordings were made from visually identified interneurons in stratum lacunosum-moleculare (L-M) and CA1 pyramidal cells in hippocampal slices from immature rats (P3–P25). A biphasic calcium-activated K+ tail current was elicited following a brief depolarization from the holding potential (−50 mV). Analysis of the kinetic properties of I K(Ca)suggests that an early current component differs between these two cell types. An early I K(Ca) with a large peak current amplitude (200.8 ± 13.2 pA, mean ± SE), slow time constant of decay (70.9 ± 3.3 ms), and relatively rapid time to peak (within 15 ms) was observed on L-M interneurons ( n = 88), whereas an early I K(Ca) with a small peak current amplitude (112.5 ± 7.3 pA), a fast time constant of decay (39.4 ± 1.6 ms), and a slower time-to-peak (within 26 ms) was observed on CA1 pyramidal neurons ( n = 85). Removal of extracellular calcium or addition of inorganic Ca2+ channel blockers (cadmium, nickel, or cobalt) was used to demonstrate the calcium dependence of these currents. Addition of norepinephrine, carbachol, and a variety of channel toxins (apamin, iberiotoxin, verruculogen, paxilline, penitrem A, and charybdotoxin) were used to further distinguish between I K(Ca) on these two hippocampal cell types. Verruculogen (100 nM), carbachol (100 μM), apamin (100 nM), TEA (1 mM), and iberiotoxin (50 nM) significantly reduced early I K(Ca) on CA1 pyramidal neurons; early I K(Ca) on L-M interneurons was inhibited by apamin and TEA. Combined with previous work showing that the firing properties of hippocampal interneurons and pyramidal cells differ, our kinetic and pharmacological data provide strong support for the hypothesis that different types of Ca2+-activated K+ current are present on these two cell types.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3