A Corollary Discharge Mechanism Modulates Central Auditory Processing in Singing Crickets

Author:

Poulet J.F.A.1,Hedwig B.1

Affiliation:

1. Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom

Abstract

Crickets communicate using loud (100 dB SPL) sound signals that could adversely affect their own auditory system. To examine how they cope with this self-generated acoustic stimulation, intracellular recordings were made from auditory afferent neurons and an identified auditory interneuron—the Omega 1 neuron (ON1)—during pharmacologically elicited singing (stridulation). During sonorous stridulation, the auditory afferents and ON1 responded with bursts of spikes to the crickets' own song. When the crickets were stridulating silently, after one wing had been removed, only a few spikes were recorded in the afferents and ON1. Primary afferent depolarizations (PADs) occurred in the terminals of the auditory afferents, and inhibitory postsynaptic potentials (IPSPs) were apparent in ON1. The PADs and IPSPs were composed of many summed, small-amplitude potentials that occurred at a rate of about 230 Hz. The PADs and the IPSPs started during the closing wing movement and peaked in amplitude during the subsequent opening wing movement. As a consequence, during silent stridulation, ON1's response to acoustic stimuli was maximally inhibited during wing opening. Inhibition coincides with the time when ON1 would otherwise be most strongly excited by self-generated sounds in a sonorously stridulating cricket. The PADs and the IPSPs persisted in fictively stridulating crickets whose ventral nerve cord had been isolated from muscles and sense organs. This strongly suggests that the inhibition of the auditory pathway is the result of a corollary discharge from the stridulation motor network. The central inhibition was mimicked by hyperpolarizing current injection into ON1 while it was responding to a 100 dB SPL sound pulse. This suppressed its spiking response to the acoustic stimulus and maintained its response to subsequent, quieter stimuli. The corollary discharge therefore prevents auditory desensitization in stridulating crickets and allows the animals to respond to external acoustic signals during the production of calling song.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3