Sensory coding and corollary discharge effects in mormyrid electric fish

Author:

Bell C. C.

Abstract

Weakly electric fish use their electrosensory systems for electrocommunication, active electrolocation and low-frequency passive electrolocation. In electric fish of the family Mormyridae, these three purposes are mediated by separate classes of electroreceptors: electrocommunication by Knollenorgan electroreceptors, active electrolocation by Mormyromast electroreceptors and low-frequency passive electrolocation by ampullary electroreceptors. The primary afferent fibres from each class of electroreceptors terminate in a separate central region. Thus, the mormyrid electrosensory system has three anatomically and functionally distinct subsystems. This review describes the sensory coding and initial processing in each of the three subsystems, with an emphasis on the Knollenorgan and Mormyromast subsystems. The Knollenorgan subsystem is specialized for the measurement of temporal information but appears to ignore both intensity and spatial information. In contrast, the Mormyromast subsystem is specialized for the measurement of both intensity and spatial information. The morphological and physiological characteristics of the primary afferents and their central projection regions are quite different for the two subsystems and reflect the type of information which the subsystems preserve. This review also describes the electric organ corollary discharge (EOCD) effects which are present in the central projection regions of each of the three electrosensory subsystems. These EOCD effects are driven by the motor command that drives the electric organ to discharge. The EOCD effects are different in each of the three subsystems and these differences reflect differences in both the pattern and significance of the sensory information that is evoked by the fish's own electric organ discharge. Some of the EOCD effects are invariant, whereas others are plastic and depend on previous afferent input. The mormyrid work is placed within two general contexts: (a) the measurement of time and intensity in sensory systems, and (b) the various roles of motor command (efferent) signals and self-induced sensory (reafferent) signals in sensorimotor systems.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3