Molecular diversity of KVα- and β-subunit expression in canine gastrointestinal smooth muscles

Author:

Epperson Anne1,Bonner Helena P.1,Ward Sean M.1,Hatton William J.1,Bradley Karri K.1,Bradley Michael E.2,Trimmer James S.3,Horowitz Burton1

Affiliation:

1. Department of Physiology and Cell Biology and

2. Pharmacology, University of Nevada, School of Medicine, Reno, Nevada 89557; and

3. Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794

Abstract

Voltage-activated K+(KV) channels play an important role in regulating the membrane potential in excitable cells. In gastrointestinal (GI) smooth muscles, these channels are particularly important in modulating spontaneous electrical activities. The purpose of this study was to identify the molecular components that may be responsible for the KV currents found in the canine GI tract. In this report, we have examined the qualitative expression of eighteen different KV channel genes in canine GI smooth muscle cells at the transcriptional level using RT-PCR analysis. Our results demonstrate the expression of KV1.4, KV1.5, KV1.6, KV2.2, and KV4.3 transcripts in all regions of the GI tract examined. Transcripts encoding KV1.2, KVβ1.1, and KVβ1.2 subunits were differentially expressed. KV1.1, KV1.3, KV2.1, KV3.1, KV3.2, KV3.4, KV4.1, KV4.2, and KVβ2.1 transcripts were not detected in any GI smooth muscle cells. We have also determined the protein expression for a subset of these KV channel subunits using specific antibodies by immunoblotting and immunohistochemistry. Immunoblotting and immunohistochemistry demonstrated that KV1.2, KV1.4, KV1.5, and KV2.2 are expressed at the protein level in GI tissues and smooth muscle cells. KV2.1 was not detected in any regions of the GI tract examined. These results suggest that the wide array of electrical activity found in different regions of the canine GI tract may be due in part to the differential expression of KV channel subunits.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3