Kv2 channels oppose myogenic constriction of rat cerebral arteries

Author:

Amberg Gregory C.,Santana Luis F.

Abstract

By hyperpolarizing arterial smooth muscle, voltage-gated, Ca2+-independent K+ (Kv) channels decrease calcium influx and thus oppose constriction. However, the molecular nature of the Kv channels function in arterial smooth muscle remains controversial. Recent investigations have emphasized a predominant role of Kv1 channels in regulating arterial tone. In this study, we tested the hypothesis Kv2 channels may also significantly regulate tone of rat cerebral arteries. We found that Kv2.1 transcript and protein are present in cerebral arterial smooth muscle. In addition, our analysis indicates that a substantial component (≈50%) of the voltage dependencies and kinetics of Kv currents in voltage-clamped cerebral arterial myocytes is consistent with Kv2 channels. Accordingly, we found that stromatoxin, a specific inhibitor of Kv2 channels, significantly decreased Kv currents in these cells. Furthermore, stromatoxin enhanced myogenic constriction of pressurized arterial segments. We also found that during angiotensin II-induced hypertension, Kv2 channel function was reduced in isolated myocytes and in intact arteries. This suggests that impaired Kv2 channel activity may contribute to arterial dysfunction during hypertension. On the basis of these novel observations, we propose a new model of Kv channel function in arterial smooth muscle in which Kv2 channels (in combination with Kv1 channels) contribute to membrane hyperpolarization and thus oppose constriction.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3