Ursodeoxycholic acid choleresis: relationship to biliary HCO-3 and effects of Na+-H+ exchange inhibitors

Author:

Renner E. L.1,Lake J. R.1,Cragoe E. J.1,Van Dyke R. W.1,Scharschmidt B. F.1

Affiliation:

1. Department of Medicine, University of California School of Medicine,San Francisco 94143.

Abstract

We have recently shown that substitution of Li+ for perfusate Na+ eliminates the HCO3(-)-rich choleresis produced by ursodeoxycholic acid (UDCA) in isolated perfused rat liver and that the increase in bile flow produced by both UDCA and taurocholic acid is partially inhibited by 1 mM amiloride. Although these findings are consistent with a role for Na+-H+ exchange in the choleresis produced by these bile acids, both Li+ substitution and amiloride affect other cellular processes, including Na+-K+-ATPase activity. We have now further explored both the relationship between UDCA-stimulated bile flow and biliary HCO3- secretion and the possible role of Na+-H+ exchange in this process by comparing the effects of amiloride with two of its more potent and presumably more specific analogues, 5-(N,N-dimethyl)amiloride hydrochloride (DMA) and 5-(N-ethyl-N-isopropyl)amiloride (EIA). In the absence of inhibitor, UDCA increased biliary HCO3- concentration ([HCO3-]) up to an apparent maximum of 60-70 mM, and bile flow and biliary HCO3- output appeared to be linearly related over a sixfold range of bile flow rates. Amiloride, DMA, and EIA each produced a concentration-dependent inhibition of UDCA-stimulated bile flow and biliary HCO3- output with an apparent rank order potency (EIA greater than DMA greater than amiloride) similar to that reported for inhibition of Na+-H+ exchange in other systems. None of the inhibitors significantly altered biliary UDCA output or the relationship between UDCA-induced bile flow and either biliary [HCO3-] or biliary HCO3- output. Effects of these inhibitors did not appear attributable either to nonspecific toxicity, as reflected by hepatic release of lactate dehydrogenase or K+, or to inhibition of hepatic Na+-K+-ATPase, measured as Na+-dependent uptake of 86Rb. In contrast to their effects on UDCA choleresis, these inhibitors had little or no effect on basal bile flow, biliary [HCO3-], and biliary HCO3- output. These findings indicate that UDCA-induced but not basal bile formation is closely coupled to biliary HCO3- concentration and output, and they provide additional evidence that UDCA choleresis requires an intact Na+-H+ exchange mechanism.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3