Dynamics of esophageal bolus transport in healthy subjects studied using multiple intraluminal impedancometry

Author:

Nguyen H. N.1,Silny J.1,Albers D.1,Roeb E.1,Gartung C.1,Rau G.1,Matern S.1

Affiliation:

1. Division of Gastroenterology and Hepatology, Department of Internal Medicine III, University Hospital, and Helmholtz Institute for Biomedical Engineering, University of Technology at Aachen, D-52057 Aachen, Germany

Abstract

The dynamics of a bolus transport through the esophagus are largely unexplored. To study this physiological process, we applied multiple intraluminal impedancometry in 10 healthy subjects. Three different protocols were used: 1) liquid bolus administered with subject supine, 2) liquid bolus with subject upright, or 3) semisolid bolus with subject supine. Transit of different parts of a bolus (bolus head, body, and tail) was analyzed at different anatomic segments, namely the pharynx and the proximal, middle, and distal thirds of the esophagus. A characteristic pattern of bolus transport was seen in all subjects. Impedance changes related to air were observed preceding the bolus head. The bolus head propelled significantly faster than did the bolus body and tail. Pharyngeal bolus transit was significantly faster than esophageal bolus transit. Within the esophagus, bolus propulsion velocity gradually decreased. Bolus transport was significantly accelerated in the upright position and delayed with increase of bolus viscosity. In conclusion, the dynamics of a bolus transport from the pharynx into the stomach are complex. It varies within both different anatomic segments and different parts of the bolus and depends on bolus characteristics and test conditions. The spatial and temporal resolution of a bolus transport can be obtained by the impedance technique.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3