Topographical plots of esophageal distension and contraction: effects of posture on esophageal peristalsis and bolus transport

Author:

Zifan Ali1,Song Hyun Joo2,Youn Young-Hoon3,Qiu Xinhuan1,Ledgerwood-Lee Melissa1,Mittal Ravinder K.1

Affiliation:

1. Division of Gastroenterology, Department of Medicine, University of California San Diego, San Diego, California

2. Department of Internal Medicine, Jeju National University School of Medicine, Jeju, South Korea

3. Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, South Korea

Abstract

Each swallow induces a wave of inhibition followed by contraction in the esophagus. Unlike contraction, which can easily be measured in humans using high-resolution manometry (HRM), inhibition is difficult to measure. Luminal distension is a surrogate of the esophageal inhibition. The aim of this study was to determine the effect of posture on the temporal and quantitative relationship between distension and contraction along the entire length of the esophagus in normal healthy subjects by using concurrent HRM, HRM impedance (HRMZ), and intraluminal ultrasound (US). Studies were conducted in 15 normal healthy subjects in the supine and Trendelenburg positions. Both manual and automated methods were used to extract quantitative pressure and impedance-derived features from the HRMZ recordings. Topographical plots of distension and contraction were visualized along the entire length of the esophagus. Distension was also measured from the US images during 10-ml swallows at 5 cm above the lower esophageal sphincter. Each swallow was associated with luminal distension followed by contraction, both of which traversed the esophagus in a sequential/peristaltic fashion. Luminal distension (US) and esophageal contraction amplitude were greater in the Trendelenburg compared with the supine position. Length of esophageal breaks (in the transition zone) were reduced in the Trendelenburg position. Change in posture altered the temporal relationship between distension and contraction, and bolus traveled closer to the esophageal contraction in the Trendelenburg position. Topographical contraction-distension plots derived from HRMZ recordings is a novel way to visualize esophageal peristalsis. Future studies should investigate if abnormalities of esophageal distension are the cause of functional dysphagia. NEW & NOTEWORTHY Ascending contraction and descending inhibition are two important components of peristalsis. High-resolution manometry only measures the contraction phase of peristalsis. We measured esophageal distension from intraluminal impedance recordings and developed novel contraction-distension topographical plots to prove that similar to contraction, distension also travels in a peristaltic fashion. Change in posture from the supine to the Trendelenburg position also increased the amplitude of esophageal distension and contraction and altered the temporal relationship between distension and contraction.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3