Regulation of electrolyte and fluid secretion in salivary acinar cells

Author:

Nauntofte B.1

Affiliation:

1. School of Dentistry, Faculty of Health Sciences, Department of OralFunction and Physiology, Panum Institute, University of Copenhagen,Denmark.

Abstract

The primary secretion from exocrine gland cells is a fluid rich in Na+ and Cl- with a plasmalike ionic composition. Activation of specific receptors on the plasma membrane by hormones and neurotransmitters, which leads to activation of the phosphoinositol metabolism, results in release of Ca2+ from internal Ca2+ stores. Intracellular free Ca2+ concentration ([Ca2+]i) then rises simultaneously at both the basolateral and luminal parts of the acinar cell, reaching maximum values within 1 s after stimulation. In parotid acinar cells, increased [Ca2+]i activates the opening of maxi K+ channels located on the basolateral membrane and Cl- channels presumably located on the luminal membrane, resulting in rapid loss of K+ and Cl- and water and cell shrinkage. Extracellular electroneutrality is maintained by a paracellular Na+ flux into the lumen. Because of the simultaneous activation of K+ and Cl- channels, secretion occurs at a virtually constant membrane potential of about -60 mV. After maximal muscarinic cholinergic stimulation, loss of K+, Cl-, and water results in an approximate 25% reduction in cell volume within 10-15 s after receptor activation. Concomitant with loss of Cl-, there is a loss of HCO3- from the cell, causing a decrease in intracellular pH of 0.1 pH units because of the carbonic anhydrase-mediated conversion of CO2 into H+ and HCO3-. H+ generated from the metabolism and HCO3- production is compensated for by extrusion of H+ by a Na(+)-H+ exchange mechanism, which is responsible for approximately 75% of net Na+ gain that occurs after stimulation. Increased [Na+]i activates the Na(+)-K+ pump, which in turn extrudes Na+ from the cells. In both the unstimulated and stimulated states, cellular production of HCO3- can drive a net uptake of Cl- via the Cl(-)-HCO3- exchange mechanism operating in parallel with the Na(+)-H+ exchanger. The operation of the Cl(-)-HCO3- exchanger is, together with a Na(+)-K(+)-2Cl- cotransport system, essential for maintainance of a high [Cl-]i both in the unstimulated state and during Cl- reuptake.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 169 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3