Affiliation:
1. School of Dentistry, Faculty of Health Sciences, Department of OralFunction and Physiology, Panum Institute, University of Copenhagen,Denmark.
Abstract
The primary secretion from exocrine gland cells is a fluid rich in Na+ and Cl- with a plasmalike ionic composition. Activation of specific receptors on the plasma membrane by hormones and neurotransmitters, which leads to activation of the phosphoinositol metabolism, results in release of Ca2+ from internal Ca2+ stores. Intracellular free Ca2+ concentration ([Ca2+]i) then rises simultaneously at both the basolateral and luminal parts of the acinar cell, reaching maximum values within 1 s after stimulation. In parotid acinar cells, increased [Ca2+]i activates the opening of maxi K+ channels located on the basolateral membrane and Cl- channels presumably located on the luminal membrane, resulting in rapid loss of K+ and Cl- and water and cell shrinkage. Extracellular electroneutrality is maintained by a paracellular Na+ flux into the lumen. Because of the simultaneous activation of K+ and Cl- channels, secretion occurs at a virtually constant membrane potential of about -60 mV. After maximal muscarinic cholinergic stimulation, loss of K+, Cl-, and water results in an approximate 25% reduction in cell volume within 10-15 s after receptor activation. Concomitant with loss of Cl-, there is a loss of HCO3- from the cell, causing a decrease in intracellular pH of 0.1 pH units because of the carbonic anhydrase-mediated conversion of CO2 into H+ and HCO3-. H+ generated from the metabolism and HCO3- production is compensated for by extrusion of H+ by a Na(+)-H+ exchange mechanism, which is responsible for approximately 75% of net Na+ gain that occurs after stimulation. Increased [Na+]i activates the Na(+)-K+ pump, which in turn extrudes Na+ from the cells. In both the unstimulated and stimulated states, cellular production of HCO3- can drive a net uptake of Cl- via the Cl(-)-HCO3- exchange mechanism operating in parallel with the Na(+)-H+ exchanger. The operation of the Cl(-)-HCO3- exchanger is, together with a Na(+)-K(+)-2Cl- cotransport system, essential for maintainance of a high [Cl-]i both in the unstimulated state and during Cl- reuptake.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
169 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献