Protection against ethanol injury by prostaglandin in a human intestinal cell line: role of microtubules

Author:

Banan A.1,Smith G. S.1,Rieckenberg C. L.1,Kokoska E. R.1,Miller T. A.1

Affiliation:

1. Theodore Cooper Surgical Research Institute, Department of Surgery, Saint Louis University Medical Center, St. Louis, Missouri 63104

Abstract

Prostaglandins have been shown to protect the gastrointestinal (GI) epithelium from injury induced by various luminal insults independent of their known acid-inhibitory effects, a process termed “cytoprotection.” The mechanism of this protective action remains unknown. The present investigation determined the role of microtubules (a major cytoskeletal component) in GI injury induced by ethanol (EtOH) and its prevention by 16,16-dimethylprostaglandin E2(dmPGE2) using cells from a human colonic cell line known as Caco-2 cells. These cells were preincubated in Eagle’s minimum essential medium with and without dmPGE2 (2.6 μM) for 15 min and subsequently incubated in media containing 1, 2.5, 5, 7.5, and 10% EtOH. The effects on cell viability and tubulin (the major protein backbone of microtubules) were then determined. EtOH concentrations ≥2.5% extensively disrupted the microtubules as demonstrated by fragmentation, kinking, and perturbation of the microtubule organizer center. EtOH treatment also led to a significant decrease in the S2 (polymerized) fraction and an increase in the S1 (monomeric) pool of tubulin. Concomitant with these effects were marked decreases in cellular viability. DmPGE2pretreatment abolished the disruption of microtubules, significantly increased the S2 fraction of tubulin, and increased cellular viability in cultures exposed to EtOH. Furthermore, pretreatment with colchicine, an inhibitor of microtubule assembly, prevented the cytoprotective action of dmPGE2. Taxol, a microtubule stabilizing agent, mimicked the effects of dmPGE2 by also enhancing microtubule integrity and increasing cellular viability in cells exposed to EtOH. Our data indicate that organization and stabilization of microtubules may play an essential role in the mechanism of prostaglandin-induced protection.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3