PMA synergistically enhances apicularen A-induced cytotoxicity by disrupting microtubule networks in HeLa cells
-
Published:2014-01-22
Issue:1
Volume:14
Page:
-
ISSN:1471-2407
-
Container-title:BMC Cancer
-
language:en
-
Short-container-title:BMC Cancer
Author:
Seo Kang-Sik,Kim Jong-Seok,Park Ji-Hoon,Song Kyoung-Sub,Yun Eun-Jin,Park Jong-Il,Kweon Gi Ryang,Yoon Wan-Hee,Lim Kyu,Hwang Byung-Doo
Abstract
Abstract
Background
Combination therapy is key to improving cancer treatment efficacy. Phorbol 12-myristate 13-acetate (PMA), a well-known PKC activator, increases the cytotoxicity of several anticancer drugs. Apicularen A induces cytotoxicity in tumor cells through disrupting microtubule networks by tubulin down-regulation. In this study, we examined whether PMA increases apicularen A-induced cytotoxicity in HeLa cells.
Methods
Cell viability was examined by thiazolyl blue tetrazolium (MTT) assays. To investigate apoptotic potential of apicularen A, DNA fragmentation assays were performed followed by extracting genomic DNA, and caspase-3 activity assays were performed by fluorescence assays using fluorogenic substrate. The cell cycle distribution induced by combination with PMA and apicularen A was examined by flow cytometry after staining with propidium iodide (PI). The expression levels of target proteins were measured by Western blotting analysis using specific antibodies, and α-tubulin mRNA levels were assessed by reverse transcription polymerase chain reaction (RT-PCR). To examine the effect of combination of PMA and apicularen A on the microtubule architecture, α-tubulin protein and nuclei were visualized by immunofluorescence staining using an anti-α-tubulin antibody and PI, respectively.
Results
We found that apicularen A induced caspase-dependent apoptosis in HeLa cells. PMA synergistically increased cytotoxicity and apoptotic sub-G1 population induced by apicularen A. These effects were completely blocked by the PKC inhibitors Ro31-8220 and Go6983, while caspase inhibition by Z-VAD-fmk did not prevent cytotoxicity. RNA interference using siRNA against PKCα, but not PKCβ and PKCγ, inhibited cytotoxicity induced by combination PMA and apicularen A. PMA increased the apicularen A-induced disruption of microtubule networks by further decreasing α- and β-tubulin protein levels in a PKC-dependent manner.
Conclusions
These results suggest that the synergy between PMA and apicularen A is involved by PKCα activation and microtubule disruption, and that may inform the development of novel approaches to treat cancer.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference45 articles.
1. Kunze B, Jansen R, Sasse F, Hofle G, Reichenbach H: Apicularens A and B, new cytostatic macrolides from Chondromyces species (myxobacteria): production, physico-chemical and biological properties. J Antibiot (Tokyo). 1998, 51 (12): 1075-1080. 10.7164/antibiotics.51.1075. 2. Hong J, Yamaki K, Ishihara K, Ahn JW, Zee O, Ohuchi K: Induction of apoptosis of RAW 264.7 cells by the cytostatic macrolide apicularen A. J Pharm Pharmacol. 2003, 55 (9): 1299-1306. 10.1211/0022357021639. 3. Hong J, Ishihara K, Zee O, Ohuchi K: Induction of apoptosis by apicularen A in human promyelocytic leukemia cell line HL-60. Planta Med. 2005, 71 (4): 306-312. 10.1055/s-2005-864095. 4. Hong J, Yokomakura A, Nakano Y, Ban HS, Ishihara K, Ahn JW, Zee O, Ohuchi K: Induction of nitric oxide production by the cytostatic macrolide apicularen A [2,4-heptadienamide, N-[(1E)-3-[(3S,5R,7R,9S)-3,4,5,6,7,8,9,10-octahydro-7,14 dihydroxy-1-oxo-5,9-epoxy-1H-2-benzoxacyclododecin-3-yl]-1 propenyl]-, (2Z,4Z)-(9CI)] and possible role of nitric oxide in apicularen A-induced apoptosis in RAW 264.7 cells. J Pharmacol Exp Ther. 2005, 312 (3): 968-977. 5. Kim JS, Lee YC, Nam HT, Li G, Yun EJ, Song KS, Seo KS, Park JH, Ahn JW, Zee O, et al: Apicularen A induces cell death through Fas ligand up-regulation and microtubule disruption by tubulin down-regulation in HM7 human colon cancer cells. Clin Cancer Res. 2007, 13 (21): 6509-6517. 10.1158/1078-0432.CCR-07-1428.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|