Encoding of graded changes in spatial specificity of prior cues in human visual cortex

Author:

Hara Yuko1,Gardner Justin L.1

Affiliation:

1. Laboratory for Human Systems Neuroscience, RIKEN Brain Science Institute, Wako, Saitama, Japan

Abstract

Prior information about the relevance of spatial locations can vary in specificity; a single location, a subset of locations, or all locations may be of potential importance. Using a contrast-discrimination task with four possible targets, we asked whether performance benefits are graded with the spatial specificity of a prior cue and whether we could quantitatively account for behavioral performance with cortical activity changes measured by blood oxygenation level-dependent (BOLD) imaging. Thus we changed the prior probability that each location contained the target from 100 to 50 to 25% by cueing in advance 1, 2, or 4 of the possible locations. We found that behavioral performance (discrimination thresholds) improved in a graded fashion with spatial specificity. However, concurrently measured cortical responses from retinotopically defined visual areas were not strictly graded; response magnitude decreased when all 4 locations were cued (25% prior probability) relative to the 100 and 50% prior probability conditions, but no significant difference in response magnitude was found between the 100 and 50% prior probability conditions for either cued or uncued locations. Also, although cueing locations increased responses relative to noncueing, this cue sensitivity was not graded with prior probability. Furthermore, contrast sensitivity of cortical responses, which could improve contrast discrimination performance, was not graded. Instead, an efficient-selection model showed that even if sensory responses do not strictly scale with prior probability, selection of sensory responses by weighting larger responses more can result in graded behavioral performance benefits with increasing spatial specificity of prior information.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3