Affiliation:
1. Department of Psychology, Vanderbilt University, Nashville, Tennessee;
2. Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; and
3. Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee
Abstract
To fully understand the relationship between perception and single neural responses, one should take into consideration the early stages of sensory processing. Few studies, however, have directly examined the neural underpinning of visual perception in the lateral geniculate nucleus (LGN), only one synapse away from the retina. In this study we recorded from LGN parvocellular (P) ON-center and OFF-center neurons while monkeys either passively viewed or actively detected a full range of contrasts. We found that OFF neurons were more sensitive in detecting negative contrasts than ON neurons were in detecting positive contrasts. Also, OFF neurons had higher spontaneous activities, higher peak response amplitudes, and were more sustained than ON neurons in their contrast responses. Puzzlingly, OFF neurons failed to show any significant correlations with the monkeys' perceptual choices, despite their greater contrast sensitivities. If, however, choice probabilities were calculated from interspike intervals instead of spike counts (thus taking into account the higher firing rates of OFF neurons), OFF neurons but not ON neurons were significantly correlated with behavioral choices. Taken together, these results demonstrate in awake, behaving animals that: 1) the ON and OFF pathways do not simply mirror each other in their functionality but instead carry qualitatively different types of information, and 2) the responses of ON and OFF neurons can be correlated with perceptual choices even in the absence of physical stimuli and interneuronal correlations.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献