Faster Detection of “Darks” than “Brights” by Monkey Superior Colliculus Neurons

Author:

Malevich Tatiana,Zhang Tong,Baumann Matthias P.,Bogadhi Amarender R.,Hafed Ziad M.ORCID

Abstract

Visual processing is segregated into ON and OFF channels as early as in the retina, and the superficial (output) layers of the primary visual cortex (V1) are dominated by neurons preferring dark stimuli. However, it is not clear how the timing of neural processing differs between “darks” and “brights” in general, especially in light of psychophysical evidence; it is also equally not clear how subcortical visual pathways that are critical for active orienting represent stimuli of positive (luminance increments) and negative (luminance decrements) contrast polarity. Here, we recorded from all visually-responsive neuron types in the superior colliculus (SC) of two male rhesus macaque monkeys. We presented a disk (0.51° radius) within the response fields (RFs) of neurons, and we varied, across trials, stimulus Weber contrast relative to a gray background. We also varied contrast polarity. There was a large diversity of preferences for darks and brights across the population. However, regardless of individual neural sensitivity, most neurons responded significantly earlier to dark than bright stimuli. This resulted in a dissociation between neural preference and visual response onset latency: a neuron could exhibit a weaker response to a dark stimulus than to a bright stimulus of the same contrast, but it would still have an earlier response to the dark stimulus. Our results highlight an additional candidate visual neural pathway for explaining behavioral differences between the processing of darks and brights, and they demonstrate the importance of temporal aspects in the visual neural code for orienting eye movements.SIGNIFICANCE STATEMENTObjects in our environment, such as birds flying across a bright sky, often project shadows (or images darker than the surround) on our retina. We studied how primate superior colliculus (SC) neurons visually process such dark stimuli. We found that the overall population of SC neurons represented both dark and bright stimuli equally well, as evidenced by a relatively equal distribution of neurons that were either more or less sensitive to darks. However, independent of sensitivity, the great majority of neurons detected dark stimuli earlier than bright stimuli, evidenced by a smaller response latency for the dark stimuli. Thus, SC neural response latency can be dissociated from response sensitivity, and it favors the faster detection of dark image contrasts.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3