Five types of nonspiking interneurons in local pattern-generating circuits of the crayfish swimmeret system

Author:

Smarandache-Wellmann Carmen1,Weller Cynthia2,Wright Terrence M.2,Mulloney Brian2

Affiliation:

1. Institute of Zoology, University of Cologne, Cologne, Germany; and

2. Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California

Abstract

We conducted a quantitative analysis of the different nonspiking interneurons in the local pattern-generating circuits of the crayfish swimmeret system. Within each local circuit, these interneurons control the firing of the power-stroke and return-stroke motor neurons that drive swimmeret movements. Fifty-four of these interneurons were identified during physiological experiments with sharp microelectrodes and filled with dextran Texas red, Neurobiotin, or both. Five types of neurons were identified on the basis of combinations of physiological and anatomical characteristics. Anatomical categories were based on 16 anatomical parameters measured from stacks of confocal images obtained from each neuron. The results support the recognition of two functional classes: inhibitors of power stroke (IPS) and inhibitors of return stroke (IRS). The IPS class of interneuron has three morphological types with similar physiological properties. The IRS class has two morphological types with physiological properties and anatomical features different from the IPS neurons but similar within the class. Three of these five types have not been previously identified. Reviewing the evidence for dye coupling within each type, we conclude that each type of IPS neuron and one type of IRS neuron occur as a single copy in each local pattern-generating circuit. The last IRS type includes neurons that might occur as a dye-coupled pair in each local circuit. Recognition of these different interneurons in the swimmeret pattern-generating circuits leads to a refined model of the local pattern-generating circuit that includes synaptic connections that encode and decode information required for intersegmental coordination of swimmeret movements.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3