Endogenous Activation of Adenosine A1 Receptors Accelerates Ischemic Suppression of Spontaneous Electrocortical Activity

Author:

Ilie Andrei,Ciocan Dragos,Zagrean Ana-Maria,Nita Dragos Alexandru,Zagrean Leon,Moldovan Mihai

Abstract

Cerebral ischemia induces a rapid suppression of spontaneous brain rhythms prior to major alterations in ionic homeostasis. It was found in vitro during ischemia that the rapidly formed adenosine, resulting from the intracellular breakdown of ATP, may inhibit synaptic transmission via the A1 receptor subtype. The link between endogenous A1 receptor activation during ischemia and the suppression of spontaneous electrocortical activity has not yet been established in the intact brain. The aim of this study was to investigate in vivo the effects of A1 receptor antagonism by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) on the time to electrocortical suppression during global cerebral ischemia. Adult male Wistar rats under chloral hydrate anesthesia were subjected to 1-min transient “four-vessel occlusion” ischemic episodes, separated by 20-min reperfusion. The rats were injected intraperitoneally with either 1.25 mg/kg DPCPX dissolved in 2 ml/kg dimethyl sulfoxide (DMSO) or the same volume of DMSO alone, 15 min before the third ischemic episode. Time to electrocortical suppression was estimated based on the decay of the root mean square of two-channel electrocorticographic recordings. During the first two ischemic episodes, electrocortical suppression appeared after ∼12 s in both groups. After DMSO administration, ischemic suppression remained unchanged. After DPCPX administration, the time to electrocortical suppression was increased by ∼10 s, and bursts of activity were recorded during the entire ischemia. These effects disappeared within 15 h after DPCPX administration. Our data provide evidence that during cerebral ischemia endogenous activation of A1 receptors accelerates the electrical “shut-down” of the whole brain.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3