Fine Temporal Structure of Beta Oscillations Synchronization in Subthalamic Nucleus in Parkinson's Disease

Author:

Park Choongseok1,Worth Robert M.12,Rubchinsky Leonid L.13

Affiliation:

1. Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University Purdue University Indianapolis; and

2. Department of Neurosurgery and

3. Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana

Abstract

Synchronous oscillatory dynamics in the beta frequency band is a characteristic feature of neuronal activity of basal ganglia in Parkinson's disease and is hypothesized to be related to the disease's hypokinetic symptoms. This study explores the temporal structure of this synchronization during episodes of oscillatory beta-band activity. Phase synchronization (phase locking) between extracellular units and local field potentials (LFPs) from the subthalamic nucleus (STN) of parkinsonian patients is analyzed here at a high temporal resolution. We use methods of nonlinear dynamics theory to construct first-return maps for the phases of oscillations and quantify their dynamics. Synchronous episodes are interrupted by less synchronous episodes in an irregular yet structured manner. We estimate probabilities for different kinds of these “desynchronization events.” There is a dominance of relatively frequent yet very brief desynchronization events with the most likely desynchronization lasting for about one cycle of oscillations. The chances of longer desynchronization events decrease with their duration. The observed synchronization may primarily reflect the relationship between synaptic input to STN and somatic/axonal output from STN at rest. The intermittent, transient character of synchrony even on very short time scales may reflect the possibility for the basal ganglia to carry out some informational function even in the parkinsonian state. The dominance of short desynchronization events suggests that even though the synchronization in parkinsonian basal ganglia is fragile enough to be frequently destabilized, it has the ability to reestablish itself very quickly.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3