Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors

Author:

Hedrick Tristan1,Waters Jack1

Affiliation:

1. Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois

Abstract

The neuromodulator acetylcholine (ACh) shapes neocortical function during sensory perception, motor control, arousal, attention, learning, and memory. Here we investigate the mechanisms by which ACh affects neocortical pyramidal neurons in adult mice. Stimulation of cholinergic axons activated muscarinic and nicotinic ACh receptors on pyramidal neurons in all cortical layers and in multiple cortical areas. Nicotinic receptor activation evoked short-latency, depolarizing postsynaptic potentials (PSPs) in many pyramidal neurons. Nicotinic receptor-mediated PSPs promoted spiking of pyramidal neurons. The duration of the increase in spiking was membrane potential dependent, with nicotinic receptor activation triggering persistent spiking lasting many seconds in neurons close to threshold. Persistent spiking was blocked by intracellular BAPTA, indicating that nicotinic ACh receptor activation evoked persistent spiking via a long-lasting calcium-activated depolarizing current. We compared nicotinic PSPs in primary motor cortex (M1), prefrontal cortex (PFC), and visual cortex. The laminar pattern of nicotinic excitation was not uniform but was broadly similar across areas, with stronger modulation in deep than superficial layers. Superimposed on this broad pattern were local differences, with nicotinic PSPs being particularly large and common in layer 5 of M1 but not layer 5 of PFC or primary visual cortex (V1). Hence, in addition to modulating the excitability of pyramidal neurons in all layers via muscarinic receptors, synaptically released ACh preferentially increases the activity of deep-layer neocortical pyramidal neurons via nicotinic receptors, thereby adding laminar selectivity to the widespread enhancement of excitability mediated by muscarinic ACh receptors.

Funder

HHS | NIH | National Institute of Mental Health (NIMH)

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

Brain Research Foundation

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3