Spontaneous ictal-like discharges and sustained potential shifts in the developing rat neocortex

Author:

Hablitz J. J.1

Affiliation:

1. Department of Neurology, Baylor College of Medicine, Houston, Texas77030.

Abstract

1. Intra- and extracellular recording techniques were used to study epileptogenesis in in vitro slices of immature rat neocortex. Slices of sensorimotor cortex were prepared from animals 5-60 days old. Epileptiform activity was induced by bath application of 50 microM picrotoxin. 2. Convulsant-induced paroxysmal activity was observed only rarely in the youngest age group (5-7 days) and consisted of orthodromically evoked bursts of low-amplitude isolated discharges. This activity was labile and could be evoked only at long interstimulus intervals (greater than 10 s). 3. Extracellular recordings in slices from 8- to 15-day-old rats showed spontaneous epileptiform activity consisting of 10- to 30-s paroxysms of repetitive spike discharges superimposed on a 3- to 5-mV negative steady potential. This steady potential declined slightly during the course of the prolonged discharge and returned quickly to base line following the last spike discharge. 4. Laminar analysis of epileptiform activity in 8- to 15-day-old rats showed that the spike discharges were negative and superimposed on a positive slow wave in superficial cortical layers. At 100 micron below the pial surface, the slow potential reversed polarity and remained negative throughout the remainder of the cortex. Spike discharges reversed polarity 800 micron below the pial surface. 5. In intracellular recordings from slices obtained from 9- to 14-day-old animals, each paroxysm began with a sharply rising membrane depolarization (paroxysmal depolarizing shift, or PDS). A second PDS occurred before the cells repolarized to their resting potential. A series of PDSs then followed, superimposed on a sustained membrane depolarization. This was associated with a 33% decrease in input resistance. Afterhyperpolarizations (AHPs) following termination of the depolarization were low in amplitude or absent. 6. In the 16- to 30-day-old age group, extracellular recordings showed paroxysmal activity consisting of 3-10 initial spikes followed by a sustained, slow, negative-potential shift. This slow potential could be as great as 30 mV in amplitude and could last as long as 180 s. Paroxysmal events recurred spontaneously at intervals of 4-11 min. Spontaneous PDSs and slow, negative-potential shifts were not observed after 30 days of age, although PDSs could still be evoked by orthodromic stimulation. 7. Intracellular recordings in the 16- to 30-day-old group revealed that each paroxysmal event consisted of an initial period of increased synaptic activity and cellular firing, followed by a marked, long-lasting depolarization (LLD), culminating in an AHP.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3