Network hyperexcitability in hippocampal slices from Mecp2 mutant mice revealed by voltage-sensitive dye imaging

Author:

Calfa Gaston1,Hablitz John J.1,Pozzo-Miller Lucas1

Affiliation:

1. Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, Alabama

Abstract

Dysfunctions of neuronal and network excitability have emerged as common features in disorders associated with intellectual disabilities, autism, and seizure activity, all common clinical manifestations of Rett syndrome (RTT), a neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Here, we evaluated the consequences of Mecp2 mutation on hippocampal network excitability, as well as synapse structure and function using a combination of imaging and electrophysiological approaches in acute slices. Imaging the amplitude and spatiotemporal spread of neuronal depolarizations with voltage-sensitive dyes (VSD) revealed that the CA1 and CA3 regions of hippocampal slices from symptomatic male Mecp2 mutant mice are highly hyperexcitable. However, only the density of docked synaptic vesicles and the rate of release from the readily releasable pool are impaired in Mecp2 mutant mice, while synapse density and morphology are unaffected. The differences in network excitability were not observed in surgically isolated CA1 minislices, and blockade of GABAergic inhibition enhanced VSD signals to the same extent in Mecp2 mutant and wild-type mice, suggesting that network excitability originates in area CA3. Indeed, extracellular multiunit recordings revealed a higher level of spontaneous firing of CA3 pyramidal neurons in slices from symptomatic Mecp2 mutant mice. The neuromodulator adenosine reduced the amplitude and spatiotemporal spread of VSD signals evoked in CA1 of Mecp2 mutant slices to wild-type levels, suggesting its potential use as an anticonvulsant in RTT individuals. The present results suggest that hyperactive CA3 pyramidal neurons contribute to hippocampal dysfunction and possibly to limbic seizures observed in Mecp2 mutant mice and RTT individuals.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3