Haptic Identification of Surfaces as Fields of Force

Author:

Chib Vikram S.,Patton James L.,Lynch Kevin M.,Mussa-Ivaldi Ferdinando A.

Abstract

The ability to discriminate an object's shape and mechanical properties from touch is one of the most fundamental somatosensory functions. When exploring physical properties of an object, such as stiffness and curvature, humans probe the object's surface and obtain information from the many sensory receptors in their upper limbs. This sensory information is critical for the guidance of actions. We studied how humans acquire an internal representation of the shape and mechanical properties of surfaces and how this information affects the execution of trajectories over the surface. Experiments involved subjects executing trajectories while holding a planar manipulandum that renders planar virtual objects with variable shape and mechanical properties. Subjects were instructed to make reaching movements with the hand between points on the boundary of a curved virtual disk of varying stiffness and curvature. The results suggest two classifications of adaptive responses: force perturbations and object boundaries. In the first case, a rectilinear hand movement is enforced by opposing the interaction forces. In the second case, the trajectory conforms to the object boundary so as to reduce interaction forces. While this dichotomy is evident for very rigid and very soft objects, the likelihood of an object boundary classification depended, in a smooth and monotonic way, on the average force experienced during the initial movements. Furthermore, the observed response across a variety of stiffness values lead to a constant average interaction force after adaptation. This suggests that the nervous system may select from the two responses through a mechanism that attempts to establish a constant interaction force.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference27 articles.

1. Modular organization of motor behavior in the frog's spinal cord

2. Computations Underlying the Execution of Movement: A Biological Perspective

3. Colgate J and Brown J. Factors affecting the z-width of a haptic display. In: IEEE International Conference on Robotics and Automation. San Diego, CA, 1994, p. 3205–3210.

4. Low dimensionality of supraspinally induced force fields

5. Haptic interaction with virtual objects

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3