Affiliation:
1. Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania
Abstract
Bradbury, Neil A. Intracellular CFTR: Localization and Function. Physiol. Rev. 79, Suppl.: S175–S191, 1999. — There is considerable evidence that CFTR can function as a chloride-selective anion channel. Moreover, this function has been localized to the apical membrane of chloride secretory epithelial cells. However, because cystic fibrosis transmembrane conductance regulator (CFTR) is an integral membrane protein, it will also be present, to some degree, in a variety of other membrane compartments (including endoplasmic reticulum, Golgi stacks, endosomes, and lysosomes). An incomplete understanding of the molecular mechanisms by which alterations in an apical membrane chloride conductance could give rise to the various clinical manifestations of cystic fibrosis has prompted the suggestion that CFTR may also play a role in the normal function of certain intracellular compartments. A variety of intracellular functions have been attributed to CFTR, including regulation of membrane vesicle trafficking and fusion, acidification of organelles, and transport of small anions. This paper aims to review the evidence for localization of CFTR in intracellular organelles and the potential physiological consequences of that localization.
Publisher
American Physiological Society
Subject
Physiology (medical),Molecular Biology,Physiology,General Medicine
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献