Cystic Fibrosis Modulator Therapies: Bridging Insights from CF to other Membrane Protein Misfolding Diseases

Author:

Kim Minsoo12ORCID,Plate Lars134ORCID

Affiliation:

1. Department of Chemistry Vanderbilt University Nashville TN 37240 United States of America

2. Program in Chemical and Physical Biology Vanderbilt University Nashville 3TN 7232 United States of America

3. Department of Biological Sciences Vanderbilt University Nashville TN 37235 United States of America

4. Department of Pathology, Microbiology and Immunology Vanderbilt University Medical Center Nashville TN 37232 United States of America

Abstract

AbstractCystic Fibrosis (CF) is a genetic disorder resulting from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to a faulty CFTR protein. Dysfunctional CFTR causes chloride ion imbalance, resulting in dense mucus accumulation in various organs, particularly the lungs. CF treatments focus on symptom management and addressing CFTR′s functional defects. Notably, development of CFTR modulator therapies has significantly advanced CF treatment. These drugs target CFTR protein structural defects induced by mutations, restoring its function and improving CF symptoms. VX‐770, a CFTR potentiator, and CFTR correctors like VX‐809, VX‐661, and VX‐445, have gained FDA approval and widespread clinical use, greatly enhancing the health and survival of many CF patients. However, some CFTR mutations lack effective targeted therapies, leaving approximately 6 % of CF patients without suitable options. CFTR modulator therapies have proven essential for combating the underlying causes of protein misfolding diseases, serving as a blueprint for similar treatments in other membrane protein misfolding diseases. This review explores current and future CFTR modulator therapies, and applications of established paradigms to membrane protein misfolding diseases. Ongoing research and innovation hold the potential for further improvements in CF management and the treatment of protein misfolding diseases.

Funder

National Institutes of Health

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3