Transport of macromolecules across microvascular walls: the two-pore theory

Author:

Rippe B.1,Haraldsson B.1

Affiliation:

1. Department of Nephrology, University Hospital, Lund, Sweden.

Abstract

In this review we summarized the evidence favoring the concept that the major plasma proteins are passively transported across vascular walls through water-filled pathways by means of convection and diffusion. With regard to solute transport, a majority of microvascular walls seems to show a bimodal size selectivity. This implies the presence of a high frequency of functional small pores, restricting proteins, and an extremely low number of non-size-selective pathways, permitting the passage of macromolecules from blood to tissue, here denoted large pores. We discussed the general behavior of such a heteroporous system. A major consequence of two-pore heteroporosity is that large-solute transport must mainly occur due to convection through large pores at low filtration rates, that is, at normal or even zero lymph flows. Indeed, convection must be the predominating transport mode for most solutes across large pores when the net filtration rate is zero. Under these (transient) conditions, the convective leak of macromolecules across large pores will be counterbalanced by absorption of essentially protein-free fluid through protein-restrictive pores. In a heteroporous membrane, proteins can thus be transported by solvent drag across vascular walls in the absence of a net convection. Normally the steady-state transcapillary fluid flow (lymph flow) is about equally partitioned among small and large pores, which makes lymph essentially a "half and half" mixture of protein-free ultrafiltrate and plasma. With increasing fluid flows, however, the plasma filtrate will be progressively diluted, eventually reaching a protein concentration largely in proportion to the fractional hydraulic conductance accounted for by the large pores (alpha L). Under these high lymph flow conditions, not only the large-pore transport but also the small-pore transport (of smaller macromolecules) will become convective. At low lymph flows, however, the small-pore transport of smaller macromolecules is usually mostly diffusive. An important implication of capillary heteroporosity is that single-pore formalism is inadequate for correctly evaluating the capillary sieving characteristics. With the use of homoporous transport formalism, the "lumped" macromolecular PS and sigma will therefore vary as a function of transcapillary fluid flow (Jv). However, it is approximately correct to use single-pore formalism for conditions when Jv is very high during steady state. Thus, if minimal sieving coefficients can be measured for macromolecules, then these values will accurately reflect (1 - sigma).(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Molecular Biology,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3