Infliximab in Inflammatory Bowel Disease: Leveraging Physiologically Based Pharmacokinetic Modeling in the Clinical Context

Author:

Petric Zvonimir1ORCID,Gonçalves João2,Paixão Paulo1ORCID

Affiliation:

1. Department of Pharmacological Sciences, Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal

2. Biopharmaceutical and Molecular Biotechnology Unit, Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal

Abstract

In this study, a physiologically based pharmacokinetic (PBPK) modeling framework was employed to explore infliximab exposure following intravenous (5 mg/kg) and subcutaneous administration (encompassing the approved 120 mg flat-fixed dose as a switching option) in virtual adult and pediatric patients with inflammatory bowel disease (IBD). The PBPK model and corresponding simulations were conducted using the PK-Sim® software platform. The PBPK simulation indicated that a 120 mg subcutaneous flat-fixed dose might not be optimal for heavier adults with IBD, suggesting the need for infliximab dose escalation. For an older virtual pediatric patient (14 years old), subcutaneous administration of a 120 mg flat-fixed dose appears to be a feasible IBD treatment option. In the final exploration scenario, the model was extended to predict hypothetical subcutaneous infliximab doses in a virtual pediatric population (6–18 years old), stratified into three weight bands (20–30 kg, 30–45 kg, and 45–70 kg), that would yield post-switch trough concentrations of infliximab comparable to those seen in adults with the 120 mg flat-fixed subcutaneous dose. The PBPK-model-informed dose suggestions were 40 mg for the 20–30 kg band, 80 mg for the 30–45 kg band, and 120 mg for the 45–70 kg band. As demonstrated in this paper, the PBPK modeling framework can serve as a versatile tool in clinical pharmacology to investigate various clinical scenarios, such as exploring alternative dosing regimens and routes of administration, ultimately advancing IBD treatment across diverse (sub)populations of clinical interest.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3