Tactile angle discriminability improvement: roles of training time intervals and different types of training tasks

Author:

Wang Wu1,Yang Jiajia23,Yu Yinghua243,Wu Qiong2,Yu Jiabin1,Takahashi Satoshi2,Ejima Yoshimichi2,Wu Jinglong25

Affiliation:

1. Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan

2. Cognitive Neuroscience Laboratory, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan

3. Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, Maryland

4. Japan Society for the Promotion of Science, Tokyo, Japan

5. Beijing Institute of Technology, Beijing, China

Abstract

Perceptual learning, which is not limited to sensory modalities such as vision and touch, emerges within a training session and between training sessions and is accompanied by the remodeling of neural connections in the cortex. However, limited knowledge exists regarding perceptual learning between training sessions. Although tactile studies have paid attention to between-session learning effects, there have been few studies asking fundamental questions regarding whether the time interval between training sessions affects tactile perceptual learning and generalization across tactile tasks. We investigated the effects of different training time intervals on the consecutive performance of a tactile angle discrimination (AD) task and a tactile orientation discrimination (OD) task training on tactile angle discriminability. The results indicated that in the short-interval training group, AD task performance significantly improved in the early stage of learning and nearly plateaued in the later stage, whereas in the long-interval training group, significant improvement was delayed and then also nearly plateaued in the later stage; additionally, improved OD task performance resulted in improved AD task performance. These findings suggest that training time interval affects the early stage of learning but not the later stage and that generalization occurs between different types of tactile tasks. NEW & NOTEWORTHY Perceptual learning, which constitutes important foundations of complicated cognitive processes, is learning better perception skills. We demonstrate that training time interval can affect the early stage of learning but not the later stage. Moreover, a tactile orientation discrimination training task can also improve tactile angle discrimination performance. These findings may expand the characteristics of between-session learning and help understand the mechanism of the generalization across tactile tasks.

Funder

Japan Society for the Promotion of Science

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3