Pulmonary stretch receptor spike time precision increases with lung inflation amplitude and airway smooth muscle tension

Author:

Chen Yan1,Marchenko Vitaly1,Rogers Robert F.1

Affiliation:

1. Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware

Abstract

Slowly adapting pulmonary stretch receptors (SARs) respond to different lung inflation volumes with distinct spike counts and patterns, conveying information regarding the rate and depth of breathing to the cardiovascular and respiratory control systems. Previous studies demonstrated that SARs respond to repetitions of the same lung inflation faithfully, suggesting the possibility of modeling an SAR's discrete response pattern to a stimulus using a statistically based method. Urethane-anesthetized rabbit SAR spike trains were recorded in response to repeated 9-, 12-, and 15-ml lung inflations, and used to construct model spike trains using K-means clustering. Analysis of the statistics of the responses to different lung inflation volumes revealed that SARs fire with more temporal precision in response to larger lung inflations, because the standard deviations of real spikes clustered around the modeled spike times of responses to 15-ml stimuli were smaller than those produced by 12 or 9 ml, even at the same absolute firing frequencies. This implied that the mechanical coupling of SAR endings with pulmonary tissue is critical in determining spike time reliability. To test this, we collected SAR responses during bronchial constriction, compared them with those produced by the same SARs under normal airway resistance, and found that their firing reliability improved during bronchial constriction. These results suggest that airway distension and mechanical coupling of the receptor endings with the airway wall (partially determined by smooth muscle tone) are important determinants of SAR spike time reliability.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3