Platelet proteome dynamics in hibernating 13-lined ground squirrels

Author:

Cooper Scott1ORCID,Wilmarth Phillip A.23,Cunliffe Jennifer M.23,Klimek John23,Pang Jiaqing4,Tassi Yunga Samuel5,Minnier Jessica6,Reddy Ashok23,David Larry23,Aslan Joseph E.364ORCID

Affiliation:

1. Biology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin

2. Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon

3. Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon

4. Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon

5. Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, Oregon

6. Division of Cardiology, Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon

Abstract

Hibernating mammals undergo a dramatic drop in temperature and blood flow during torpor, yet avoid stasis blood clotting through mechanisms that remain unspecified. The effects of hibernation on hemostasis are especially complex, as cold temperatures generally activate platelets, resulting in platelet clearance and cold storage lesions in the context of blood transfusion. With a hibernating body temperature of 4°C–8°C, 13-lined ground squirrels ( Ictidomys tridecemlineatus) provide a model to study hemostasis as well as platelet cold storage lesion resistance during hibernation. Here, we quantified and systematically compared proteomes of platelets collected from ground squirrels at summer (active), fall (entrance), and winter (topor) to elucidate how molecular-level changes in platelets may support hemostatic adaptations in torpor. Platelets were isolated from a total of 11 squirrels in June, October, and January. Platelet lysates from each animal were digested with trypsin prior to 11-plex tandem mass tag (TMT) labeling, followed by LC-MS/MS analysis for relative protein quantification. We measured >700 proteins with significant variations in abundance in platelets over the course of entrance, torpor, and activity—including systems of proteins regulating translation, secretion, metabolism, complement, and coagulation cascades. We also noted species-specific differences in levels of hemostatic, secretory, and inflammatory regulators in ground squirrel platelets relative to human platelets. Altogether, we provide the first ever proteomic characterization of platelets from hibernating animals, where systematic changes in metabolic, hemostatic, and other proteins may account for physiological adaptations in torpor and also inform translational effort to improve cold storage of human platelets for transfusion.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Eye Institute

HHS | NIH | National Cancer Institute

HHS | NIH | NIH Office of the Director

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3