The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets

Author:

Cooper Scott T.1,Richters Karl E.1,Melin Travis E.1,Liu Zhi-jian2,Hordyk Peter J.1,Benrud Ryan R.1,Geiser Lauren R.1,Cash Steve E.3,Simon Shelley C.3,Howard David R.1,Ereth Mark H.4,Sola-Visner Martha C.2

Affiliation:

1. Biology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin;

2. Division of Newborn Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts;

3. Hematology/Oncology, Gundersen Lutheran Medical Foundation, La Crosse, Wisconsin; and

4. Division of Cardiovascular and Thoracic Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota

Abstract

Hibernating mammals have developed many physiological adaptations to extreme environments. During hibernation, 13-lined ground squirrels ( Ictidomys tridecemlineatus) must suppress hemostasis to survive prolonged body temperatures of 4–8°C and 3–5 heartbeats per minute without forming lethal clots. Upon arousal in the spring, these ground squirrels must be able to quickly restore normal clotting activity to avoid bleeding. Here we show that ground squirrel platelets stored in vivo at 4–8°C were released back into the blood within 2 h of arousal in the spring with a body temperature of 37°C but were not rapidly cleared from circulation. These released platelets were capable of forming stable clots and remained in circulation for at least 2 days before newly synthesized platelets were detected. Transfusion of autologous platelets stored at 4°C or 37°C showed the same clearance rates in ground squirrels, whereas rat platelets stored in the cold had a 140-fold increase in clearance rate. Our results demonstrate that ground squirrel platelets appear to be resistant to the platelet cold storage lesions observed in other mammals, allowing prolonged storage in cold stasis and preventing rapid clearance upon spring arousal. Elucidating these adaptations could lead to the development of methods to store human platelets in the cold, extending their shelf life.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3