Dynamic phosphometabolomic profiling of human tissues and transgenic models by18O-assisted31P NMR and mass spectrometry

Author:

Nemutlu Emirhan12,Zhang Song1,Gupta Anu1,Juranic Nenad O.3,Macura Slobodan I.3,Terzic Andre1,Jahangir Arshad1,Dzeja Petras1

Affiliation:

1. Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics,

2. Department of Analytical Chemistry, Faculty of Pharmacy, University of Hacettepe, Ankara, Turkey

3. Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, and Scottsdale, Arizona; and

Abstract

Next-generation screening of disease-related metabolomic phenotypes requires monitoring of both metabolite levels and turnover rates. Stable isotope18O-assisted31P nuclear magnetic resonance (NMR) and mass spectrometry uniquely allows simultaneous measurement of phosphometabolite levels and turnover rates in tissue and blood samples. The18O labeling procedure is based on the incorporation of one18O into Pifrom [18O]H2O with each act of ATP hydrolysis and the distribution of18O-labeled phosphoryls among phosphate-carrying molecules. This enables simultaneous recording of ATP synthesis and utilization, phosphotransfer fluxes through adenylate kinase, creatine kinase, and glycolytic pathways, as well as mitochondrial substrate shuttle, urea and Krebs cycle activity, glycogen turnover, and intracellular energetic communication. Application of expanded18O-labeling procedures has revealed significant differences in the dynamics of G-6-P[18O] (glycolysis), G-3-P[18O] (substrate shuttle), and G-1-P[18O] (glycogenolysis) between human and rat atrial myocardium. In human atria, the turnover of G-3-P[18O], which defects are associated with the sudden death syndrome, was significantly higher indicating a greater importance of substrate shuttling to mitochondria. Phosphometabolomic profiling of transgenic hearts deficient in adenylate kinase (AK1−/−), which altered levels and mutations are associated to human diseases, revealed a stress-induced shift in metabolomic profile with increased CrP[18O] and decreased G-1-P[18O] metabolic dynamics. The metabolomic profile of creatine kinase M-CK/ScCKmit−/−-deficient hearts is characterized by a higher G-6-[18O]P turnover rate, G-6-P levels, glycolytic capacity, γ/β-phosphoryl of GTP[18O] turnover, as well as β-[18O]ATP and β-[18O]ADP turnover, indicating altered glycolytic, guanine nucleotide, and adenylate kinase metabolic flux. Thus,18O-assisted gas chromatography-mass spectrometry and31P NMR provide a suitable platform for dynamic phosphometabolomic profiling of the cellular energetic system enabling prediction and diagnosis of metabolic diseases states.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3