A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression

Author:

Conour J. E.1,Graham W. V.1,Gaskins H. R.123

Affiliation:

1. Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801

2. Department of Veterinary Pathology, University of Illinois, Urbana, Illinois 61801

3. Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801

Abstract

The intracellular reduction-oxidation (redox) environment influences cell cycle progression; however, underlying mechanisms are poorly understood. To examine potential mechanisms, the intracellular redox environment was characterized per cell cycle phase in Chinese hamster ovary fibroblasts via flow cytometry by measuring reduced glutathione (GSH), reactive oxygen species (ROS), and DNA content with monochlorobimane, 2′,7′-dichlorohydrofluorescein diacetate (H2DCFDA), and DRAQ5, respectively. GSH content was significantly greater in G2/M compared with G1phase cells, whereas GSH was intermediate in S phase cells. ROS content was similar among phases. Together, these data demonstrate that G2/M cells are more reduced than G1cells. Conventional approaches to define regulatory mechanisms are subjective in nature and focus on single proteins/pathways. Proteome databases provide a means to overcome these inherent limitations. Therefore, a novel bioinformatic approach was developed to exhaustively identify putative redox-regulated cell cycle proteins containing redox-sensitive protein motifs. Using the InterPro ( http://www.ebi.ac.uk/interpro/ ) database, we categorized 536 redox-sensitive motifs as: 1) active/functional-site cysteines, 2) electron transport, 3) heme, 4) iron binding, 5) zinc binding, 6) metal binding (non-Fe/Zn), and 7) disulfides. Comparing this list with 1,634 cell cycle-associated proteins from Swiss-Prot and SpTrEMBL ( http://us.expasy.org/sprot/ ) revealed 92 candidate proteins. Three-fourths (69 of 92) of the candidate proteins function in the central cell cycle processes of transcription, nucleotide metabolism, (de)phosphorylation, and (de)ubiquitinylation. The majority of oxidant-sensitive candidate proteins (68.9%) function during G2/M phase. As the G2/M phase is more reduced than the G1phase, oxidant-sensitive proteins may be temporally regulated by oscillation of the intracellular redox environment. Combined with evidence of intracellular redox compartmentalization, we propose a spatiotemporal mechanism that functionally links an oscillating intracellular redox environment with cell cycle progression.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3