Linkage of myostatin pathway genes with knee strength in humans

Author:

Huygens W.1,Thomis M. A.1,Peeters M. W.1,Aerssens J.2,Janssen R.2,Vlietinck R. F.23,Beunen G.1

Affiliation:

1. Department Sport and Movement Sciences, Faculty of Physical Education and Physiotherapy, Katholieke Universiteit Leuven, Maastricht 6229 ER, The Netherlands

2. Division of Genetics and Molecular Cell Biology, Universiteit Maastricht, Maastricht 6229 ER, The Netherlands

3. Center for Human Genetics, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven 3000, Belgium

Abstract

This study was the first to explore the potential role of the myostatin ( GDF8) pathway in relation to muscle strength and estimated muscle cross-sectional area in humans using linkage analysis with a candidate gene approach. In young male sibs ( n = 329) 11 polymorphic markers in or near 10 candidate genes from the myostatin pathway were genotyped. Muscle mass was estimated by anthropometric measurements, and maximal knee strength was evaluated using isokinetic dynamometers (Cybex NORM). Single-point nonparametric variance components and linear quantitative trait locus regression linkage analysis methods were used. Linkage patterns were observed between knee extension and flexion peak torque with markers D2S118 ( GDF8), D6S1051 ( CDKN1A), and D11S4138 ( MYOD1), and a maximum LOD score of 2.63 ( P = 0.0002) was observed with D2S118. The ratios of peak torque over muscle and bone area of the midthigh of the lower contraction velocity (60°/s) showed more frequently significant LOD scores than the torques at high velocity (240°/s). Although myostatin is physiologically more related to muscle mass through possible effects of hyperplasia and hypertrophy than it is to strength, only two estimated muscle cross-sectional areas were marginally linked (LOD 1.06 and 1.07, P = 0.01) with marker D2S118 near GDF8 (2q32.2). The present results gave suggestive evidence that the myostatin pathway might be important for strength phenotypes, and GDF8, CDKN1A, and MYOD1 are potential candidate regions for a further and denser mapping with respect to these phenotypes.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3