Alterations in oxidative gene expression in equine skeletal muscle following exercise and training

Author:

Eivers Suzanne S.1,McGivney Beatrice A.1,Fonseca Rita G.2,MacHugh David E.13,Menson Katie4,Park Stephen D.1,Rivero Jose-Luis L.5,Taylor Cormac T.34,Katz Lisa M.2,Hill Emmeline W.1

Affiliation:

1. Animal Genomics Laboratory,

2. University Veterinary Hospital, University College Dublin School of Agriculture, Food Science and Veterinary Medicine;

3. University College Dublin Conway Institute of Biomolecular and Biomedical Research,

4. University College Dublin School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland; and

5. Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, Campus Rabanales, Crtra. Madrid-Cadiz, Cordoba, Spain

Abstract

Intense selection for elite racing performance in the Thoroughbred horse ( Equus caballus) has resulted in a number of adaptive physiological phenotypes relevant to exercise; however, the underlying molecular mechanisms responsible for these characteristics are not well understood. Adaptive changes in mRNA expression in equine skeletal muscle were investigated by real-time qRT-PCR for a panel of candidate exercise-response genes following a standardized incremental-step treadmill exercise test in eight untrained Thoroughbred horses. Biopsy samples were obtained from the gluteus medius before, immediately after, and 4 h after exercise. Significant ( P < 0.05) differences in gene expression were detected for six genes ( CKM, COX4I1, COX4I2, PDK4, PPARGC1A, and SLC2A4) 4 h after exercise. Investigation of relationships between mRNA and velocity at maximum heart rate (VHRmax) and peak postexercise plasma lactate concentration ([La]T1) revealed significant ( P < 0.05) associations with postexercise COX4I1 and PPARCG1A expression and between [La]T1and basal COX4I1 expression. Gene expression changes were investigated in a second cohort of horses after a 10 mo period of training. In resting samples, COX4I1 gene expression had significantly increased following training, and, after exercise, significant differences were identified for COX4I2, PDK4, and PPARGC1A. Significant relationships with VHRmaxand [La]T1were detected for PPARGC1A and COX4I1. These data highlight the roles of genes responsible for the regulation of oxygen-dependent metabolism, glucose metabolism, and fatty acid utilization in equine skeletal muscle adaptation to exercise.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3