Affiliation:
1. Orthopaedic Research Laboratory, Carolinas Medical Center, Charlotte, North Carolina 28232-2861
Abstract
The mechanism for the renal adaptation to low-phosphate diets is not well understood. Whether the Hyp mutation of the Phex gene blocks this adaptation is also not clear. To gain further insight into this, 5-wk-old normal and Hyp mice were fed a control (1.0% P) or low-phosphate diet (0.03% P) for 3–5 days. Renal RNA was hybridized to Affymetrix U74Av2 microarrays (5 arrays/group). Of the 5,719 detectable genes on each array, 290 responded significantly ( P < 0.01) to low-phosphate diet in normal mice. This was reduced significantly ( P < 0.001) to 7 in the Hyp mice. This suggested that the adaptations of the normal kidney to a low-phosphate environment were blocked by the Hyp mutation. The Npt2 phosphate transporter, vitamin D 1α- and 24-hydroxylases, and calbindins D9K and D28K responded in the expected fashion. Genes with significant ( P < 0.05) diet-by-genotype interaction were analyzed by GenMAPP and MAPPFinder. This revealed a cluster of differentially expressed genes associated with microtubule-based processes. Most α- and β-tubulins and most kinesins had responses to low-phosphate diet in normal mice which were abolished or reversed in Hyp mice. In summary, renal adaptation to low-phosphate diet involved changes in the mRNA expression of specific genes. Disruption of these responses in Hyp mice may contribute to their abnormal phosphate homeostasis.
Publisher
American Physiological Society
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献