Altered Expression of Several Molecular Mediators of Cerebrospinal Fluid Production inHypMice

Author:

Kaplan Jared1,Tommasini Steven2,Yao Gang-Qing1,Zhu Meiling1,Nishimura Sayoko3,Ghazarian Sevanne1,Louvi Angeliki3,Insogna Karl1ORCID

Affiliation:

1. Department of Internal Medicine, Yale School of Medicine , New Haven, CT 06520-8020 , USA

2. Department of Orthopaedic Surgery, Yale School of Medicine , New Haven, CT 06520-8020 , USA

3. Departments of Neurosurgery and Neuroscience, Yale School of Medicine , New Haven, CT 06520-8020 , USA

Abstract

AbstractContextX-linked hypophosphatemia (XLH) is a genetic disease, causing life-long hypophosphatemia due to overproduction of fibroblast growth factor 23 (FGF23). XLH is associated with Chiari malformations, cranial synostosis, and syringomyelia. FGF23 signals through FGFR1c and requires a coreceptor, α-Klotho, which is expressed in the renal distal convoluted tubules and the choroid plexus (ChP). In the ChP, α-Klotho participates in regulating cerebrospinal fluid (CSF) production by shuttling the sodium/potassium adenosine triphosphatase (Na+/K+-ATPase) to the luminal membrane. The sodium/potassium/chloride cotransporter 1 (NKCC1) also makes a substantial contribution to CSF production.ObjectiveSince CSF production has not been studied in XLH, we sought to determine if there are changes in the expression of these molecules in the ChP of Hyp mice, the murine model of XLH, as a first step toward testing the hypothesis that altered CSF production contributes to the cranial and spinal malformations seen this disease.MethodsSemi-quantitative real-time PCR was used to analyze the level of expression of transcripts for Fgfr1c, and thee key regulators of CSF production, Klotho, Atp1a1 and Slc12a2. In situ hybridization was used to provide anatomical localization for the encoded proteins.ResultsReal-time polymerase chain reaction (RT-PCR) demonstrated significant upregulation of Klotho transcripts in the fourth ventricle of Hyp mice compared to controls. Transcript levels for Fgfr1c were unchanged in Hyp mice. Atp1a1 transcripts encoding the alpha-1 subunit of Na+/K+-ATPase were significantly downregulated in the third and lateral ventricles (LV). Expression levels of the Slc12a2 transcript (which encodes NKCC1) were unchanged in Hyp mice compared to controls. In situ hybridization (ISH) confirmed the presence of all 4 transcripts in the LV ChP both of WT and Hyp mice.ConclusionThis is the first study to document a significant change in the level of expression of the molecular machinery required for CSF production in Hyp mice. Whether similar changes occur in patients with XLH, potentially contributing to the cranial and spinal cord abnormalities frequently seen in XLH, remains to be determined.

Publisher

The Endocrine Society

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3