Targeting brain stem centers of cardiovascular control using adenoviral vectors: impact of promoters on transgene expression

Author:

Lonergan Tina1,Teschemacher Anja G.2,Hwang D. Y.3,Kim K.-S.3,Pickering Anthony E.1,Kasparov Sergey1

Affiliation:

1. Department of Physiology, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, United Kingdom

2. Department of Pharmacology, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, United Kingdom

3. Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts

Abstract

Adenoviral vectors (AVV) are widely used as tools for exploring gene function in studies of the central autonomic control, but the cellular specificity of the promoters commonly used in these vectors has not been studied. We evaluated AVV with four “wide-spectrum” promoters, human cytomegalovirus promoter (HCMV), synapsin-1 promoter (Syn1), tubulin-α1 promoter (Tα1), and neuron-specific enolase (NSE) for their ability to express enhanced green fluorescent protein (EGFP) within the dorsal vagal complex and the adjacent brain stem. They were compared with the PRSx8 promoter, specifically designed to target catecholaminergic neurons. AdHCMVEGFP, AdSyn1EGFP-WHE (woodchuck hepatitis enhancer element), AdTα1EGFP, and AdNSEEGFP were unable to drive expression of EGFP in dopamine β-hydroxylase-immunoreactive neurons of the A2 cell group, although the adjacent dorsal vagal motonucleus and especially hypoglossal motoneurons did express high levels of EGFP. AdPRSx8EGFP efficiently drove EGFP expression in the A2 cell group but also in choline acetyltransferase-positive vagal motoneurons. However, catecholaminergic neurons could be selectively and efficiently transduced via a retrograde route by injecting the vector into their target areas. Thus AVV with “wide-spectrum” promoters have strikingly different activity in the diverse cellular populations within brain stem cardiovascular control centers. The PRSx8 promoter is a valuable tool for the study of the role of catecholaminergic neurons.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3