Affiliation:
1. Laboratoire de Physiologie et Génomique Rénales, Unité Mixte de Recherche Centre National de la Recherche Scientifique/UPMC 7134
2. Groupe d’Anatomo-Pathologie, INSERM U430, IFR 58, Institut des Cordeliers, 75270 Paris
3. Département de Biologie Joliot Curie, CEA Saclay, 91191 Gif sur Yvette, France
Abstract
Plasticity of mouse renal collecting duct in response to potassium depletion. —Renal collecting ducts are the main sites for regulation of whole body potassium balance. Changes in dietary intake of potassium induce pleiotropic adaptations of collecting duct cells, which include alterations of ion and water transport properties along with an hypertrophic response. To study the pleiotropic adaptation of the outer medullary collecting duct (OMCD) to dietary potassium depletion, we combined functional studies of renal function (ion, water, and acid/base handling), analysis of OMCD hypertrophy (electron microscopy) and hyperplasia (PCNA labeling), and large scale analysis of gene expression (transcriptome analysis). The transcriptome of OMCD was compared in mice fed either a normal or a potassium-depleted diet for 3 days using serial analysis of gene expression (SAGE) adapted for downsized extracts. SAGE is based on the generation of transcript-specific tag libraries. Approximately 20,000 tags corresponding to 10,000 different molecular species were sequenced in each library. Among the 186 tags differentially expressed ( P < 0.05) between the two libraries, 120 were overexpressed and 66 were downregulated. The SAGE expression profile obtained in the control library was representative of different functional classes of proteins and of the two cell types (principal and α-intercalated cells) constituting the OMCD. Combined with gene expression analysis, results of functional and morphological studies allowed us to identify candidate genes for distinct physiological processes modified by potassium depletion: sodium, potassium, and water handling, hyperplasia and hypertrophy. Finally, comparison of mouse and human OMCD transcriptomes allowed us to address the question of the relevance of the mouse as a model for human physiology and pathophysiology.
Publisher
American Physiological Society
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献