Author:
Buffin-Meyer B,Verbavatz J M,Cheval L,Marsy S,Younes-Ibrahim M,Le Moal C,Doucet A
Abstract
Because in outer medullary collecting ducts (OMCD) of K(+)-depleted rats, K+ secretion is abolished, whereas Na+, K(+)-ATPase, which energizes this secretion, is markedly stimulated, it has been proposed that Na+, K(+)-ATPase was mislocated to the apical cell membrane and energized K+ reabsorption. This hypothesis has been supported by paradoxical effects of ouabain in K(+)-depleted compared with normal rats. However, we have recently shown that ouabain inhibits not only Na+, K(+)-ATPase but also apical H+, K(+)-ATPase in the OMCD of K(+)-depleted rats. Therefore, this study was designed to evaluate whether previous observations were accounted for by Na+, K(+)-ATPase or by ouabain-sensitive H+, K(+)-ATPase. Na+, K(+)-ATPase was distinguished from H+, K(+)-ATPase by its insensitivity to Sch-28080. Results indicate that the hydrolytic and transport activities of Na+, K(+)-ATPase, the number of its functional units, and the expression of mRNA of its alpha 1 and beta 1 subunits were increased threefold or more in the OMCD of rats fed a K(+)-depleted diet for 2 wk. By immunofluorescence, Na+, K(+)-ATPase staining was strongly increased in K(+)-depleted rats but remained localized to the basolateral pole of OMCD principal cells. In conclusion, K+ depletion is associated with marked induction of functional Na+, K+ pumps at the basolateral pole of rat OMCD. Therefore, reduced K+ secretion might result from inhibition of apical K+ conductances and stimulation of basolateral K+ recycling. It is proposed that increased Na+, K(+)-ATPase participates in the increased Na+ reabsorption prevailing in collecting ducts of K(+)-depleted rats.
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献