Identification of differential gene expression during porcine conceptus rapid trophoblastic elongation and attachment to uterine luminal epithelium

Author:

Ross Jason W.1,Ashworth Morgan D.1,Stein Daniel R.1,Couture Oliver P.2,Tuggle Christopher K.2,Geisert Rodney D.1

Affiliation:

1. Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma

2. Department of Animal Science, Iowa State University, Ames, Iowa

Abstract

Early embryonic development in the pig is characterized by a rapid elongation of the conceptus trophectoderm on days 11–12 of gestation. Initially, the conceptus trophoblast is morphologically rearranged from a 10-mm sphere into a tubular shape, transitioning into a thin filamentous form >150 mm in length in 2–3 h, followed by continued expansion within the uterine lumen for several days. Conceptus elongation is critical for establishing adequate placental surface area needed for embryo and fetal survival throughout gestation. The objective of this study was to characterize conceptus gene expression during trophoblastic elongation and the early attachment to the uterine endometrium on days 11–14 of gestation with the GeneChip Porcine Genome Array. In all, 3,759 different probe sets were statistically different in at least one comparison [spherical vs. tubular, spherical vs. day 12 filamentous (D12F), spherical vs. day 14 filamentous (D14F), tubular vs. D12F, tubular vs. D14F, and D12F vs. D14F]. When restricted to the spherical vs. D12F and D12F vs. D14F comparisons, 482 and 232 genes, respectively, were statistically different with greater than twofold change in expression. Utilization of k-means clustering, in addition to the Database for Annotation, Visualization, and Integrated Discovery (DAVID), identified genes of interest. Quantitative RT-PCR expression profiles for interferon-γ (IFNG), heat shock protein 27 kDa (HSPB1), angiomotin, B-cell linker (BLNK), chemokine ligand 14 (CXCL14), parathyroid hormone-like hormone (PTHLH), and maspin were supportive of the GeneChip Porcine Genome Array data.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Reference60 articles.

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3