Secreted metabolome of porcine blastocysts encapsulated within

Author:

Walsh Sophie C.,Miles Jeremy R.ORCID,Broeckling Corey D.ORCID,Rempel Lea A.ORCID,Wright-Johnson Elane C.,Pannier Angela K.ORCID

Abstract

Context The exact mechanisms regulating the initiation of porcine conceptus elongation are not known due to the complexity of the uterine environment. Aims To identify contributing factors for initiation of conceptus elongation in vitro, this study evaluated differential metabolite abundance within media following culture of blastocysts within unmodified alginate (ALG) or Arg-Gly-Asp (RGD)-modified alginate hydrogel culture systems. Methods Blastocysts were harvested from pregnant gilts, encapsulated within ALG or RGD or as non-encapsulated control blastocysts (CONT), and cultured. At the termination of 96 h culture, media were separated into blastocyst media groups: non-encapsulated control blastocysts (CONT); ALG and RGD blastocysts with no morphological change (ALG− and RGD−); ALG and RGD blastocysts with morphological changes (ALG+ and RGD+) and evaluated for non-targeted metabolomic profiling by liquid chromatography (LC)–mass spectrometry (MS) techniques and gas chromatography–(GC–MS). Key results Analysis of variance identified 280 (LC–MS) and 1 (GC–MS) compounds that differed (P < 0.05), of which 134 (LC–MS) and 1 (GC–MS) were annotated. Metabolites abundance between ALG+ vs ALG−, RGD+ vs RGD−, and RGD+ vs ALG+ were further investigated to identify potential differences in metabolic processes during the initiation of elongation. Conclusions This study identified changes in phospholipid, glycosphingolipid, lipid signalling, and amino acid metabolic processes as potential RGD-independent mechanisms of elongation and identified changes in lysophosphatidylcholine and sphingolipid secretions during RGD-mediated elongation. Implications These results illustrate changes in phospholipid and sphingolipid metabolic processes and secretions may act as mediators of the RGD-integrin adhesion that promotes porcine conceptus elongation.

Funder

USDA-NIFA-AFRI

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3