Ion Transport and Membrane Potential in CNS Myelinated Axons II. Effects of Metabolic Inhibition

Author:

Leppanen Lisa1,Stys Peter K.1

Affiliation:

1. Loeb Research Institute, Ottawa Civic Hospital, University of Ottawa, Ottawa, Ontario K1Y 4E9, Canada

Abstract

Leppanen, Lisa and Peter K. Stys. Ion transport and membrane potential in CNS myelinated axons. II. Effects of metabolic inhibition. J. Neurophysiol. 78: 2095–2107, 1997. Compound resting membrane potential was recorded by the grease gap technique (37°C) during glycolytic inhibition and chemical anoxia in myelinated axons of rat optic nerve. The average potential recorded under control conditions (no inhibitors) was −47 ± 3 (SD) mV and was stable for 2–3 h. Zero glucose (replacement with sucrose) depolarized the nerve in a monotonic fashion to 55 ± 10% of control after 60 min. In contrast, glycolytic inhibition with deoxyglucose (10 mM, glucose omitted) or iodoacetate (1 mM) evoked a characteristic voltage trajectory consisting of four distinct phases. A distinct early hyperpolarizing response ( phase 1) was followed by a rapid depolarization ( phase 2). Phase 2 was interrupted by a second late hyperpolarizing response ( phase 3), which led to an abrupt reduction in the rate of potential change, causing nerves to then depolarize gradually ( phase 4) to 75 ± 9% and 55 ± 6% of control after 60 min, in deoxyglucose and iodoacetate, respectively. Pyruvate (10 mM) completely prevented iodoacetate-induced depolarization. Effects of glycolytic inhibitors were delayed by 20–30 min, possibly due to continued, temporary oxidative phosphorylation using alternate substrates through the tricarboxylic acid cycle. Chemical anoxia (CN 2 mM) immediately depolarized nerves, and phase 1 was never observed. However a small inflection in the voltage trajectory was typical after ≈10 min. This was followed by a slow depolarization to 34 ± 4% of control resting potential after 60 min of CN. Addition of ouabain (1 mM) to CN-treated nerves caused an additional depolarization, indicating a minor glycolytic contribution to the Na+-K+-ATPase, which is fueled preferentially by ATP derived from oxidative phosphorylation. Phases 1 and 3 during iodoacetate exposure were diminished under nominally zero Ca2+ conditions and abolished with the addition of the Ca2+ chelator ethylene glycol-bis(β-aminoethyl ether)- N,N,N′,N′-tetraacetic acid (EGTA; 5 mM). Tetraethylammonium chloride (20 mM) also reduced phase 1 and eliminated phase 3. The inflection observed with CN was eliminated during exposure to zero-Ca2+/EGTA. A Ca2+-activated K+ conductance may be responsible for the observed hyperpolarizing inflections. Block of Na+ channels with tetrodotoxin (TTX; 1 μM) or replacement of Na+ with the impermeant cation choline significantly reduced depolarization during glycolytic inhibition with iodoacetate or chemical anoxia. The potential-sparing effects of TTX were less than those of choline-substituted perfusate, suggesting additional, TTX-insensitive Na+ influx pathways in metabolically compromised axons. The local anesthetics, procaine (1 mM) and QX-314 (300 μM), had similar effects to TTX. Taken together, the rate and extent of depolarization of metabolically compromised axons is dependent on external Na+. The Ca2+-dependent hyperpolarizing phases and reduction in rate of depolarization at later times may reflect intrinsic mechanisms designed to limit axonal injury during anoxia/ischemia.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3