Subgroups of Rostral Ventrolateral Medullary and Caudal Medullary Raphe Neurons Based on Patterns of Relationship to Sympathetic Nerve Discharge and Axonal Projections

Author:

Barman Susan M.1,Gebber Gerard L.1

Affiliation:

1. Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824-1317

Abstract

Barman, Susan M. and Gerard L. Gebber. Subgroups of rostral ventrolateral medullary and caudal medullary raphe neurons based on patterns of relationship to sympathetic nerve discharge and axonal projections. J. Neurophysiol. 77: 65–75, 1997. This study was designed to answer three questions concerning rostral ventrolateral medullary (RVLM) and caudal medullary raphe (CMR) neurons with activity correlated to sympathetic nerve discharge (SND). 1) What are the proportions of RVLM and CMR neurons that have activity correlated to both the cardiac-related and 10-Hz rhythms in SND, to only the 10-Hz rhythm, and to only the cardiac-related rhythm? 2) Which of these cell types project to the spinal cord? 3) Do the outputs of the cardiac-related and 10-Hz rhythm generators converge at the level of bulbospinal neurons or their antecedent interneurons? To address these issues we recorded from 44 RVLM and 48 CMR neurons with sympathetic nerve–related activity in urethan-anesthetized cats with intact carotid sinus nerves, but sectioned aortic depressor and vagus nerves. Spike-triggered averaging, arterial pulse-triggered analysis, and coherence analysis revealed that the naturally occurring discharges of 24 of these RVLM neurons and 41 of these CMR neurons were correlated to both the 10-Hz and cardiac-related rhythms in inferior cardiac postganglionic SND. The discharges of the other neurons were correlated to only the 10-Hz rhythm (15 RVLM and 6 CMR neurons) or to only the cardiac-related rhythm (5 RVLM neurons and 1 CMR neuron) in SND. The time-controlled collision test verified that 16 of 18 RVLM and 31 of 34 CMR neurons with activity correlated to both rhythms were antidromically activated by stimulation of the white matter of the first thoracic (T1) segment of the spinal cord. In contrast, only 1 of 10 RVLM neurons and 0 of 4 CMR neurons with activity correlated to only the 10-Hz rhythm could be antidromically activated by stimulation at T1. Also 0 of 3 RVLM neurons with activity correlated to only the cardiac-related rhythm in SND were antidromically activated by spinal stimulation. These data show for the first time that bulbospinal sympathetic pathways emanating from the RVLM and CMR are comprised almost exclusively of neurons whose discharges are correlated to both the cardiac-related and 10-Hz rhythms in SND. Moreover, the data support the hypothesis that the outputs of the cardiac-related and 10-Hz rhythm generators converge on RVLM and CMR bulbospinal neurons rather than on their antecedent interneurons. Finally, the data demonstrate that a substantial proportion of RVLM neurons and a small group of CMR neurons with activity correlated to SND do not project to the thoracic spinal cord. Their discharges were correlated to only one of the rhythms in SND. Their axonal trajectories and functions are unknown.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3