2019 Ludwig Lecture: Rhythms in sympathetic nerve activity are a key to understanding neural control of the cardiovascular system

Author:

Barman Susan M.1

Affiliation:

1. Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan

Abstract

This review is based on the Carl Ludwig Distinguished Lecture, presented at the 2019 Experimental Biology Meeting in Orlando, FL, and provides a snapshot of >40 years of work done in collaboration with the late Gerard L. Gebber and colleagues to highlight the importance of considering the rhythmic properties of sympathetic nerve activity (SNA) and brain stem neurons when studying the neural control of autonomic regulation. After first providing some basic information about rhythms, I describe the patterns and potential functions of rhythmic activity recorded from sympathetic nerves under various physiological conditions. I review the evidence that these rhythms reflect the properties of central sympathetic neural networks that include neurons in the caudal medullary raphe, caudal ventrolateral medulla, caudal ventrolateral pons, medullary lateral tegmental field, rostral dorsolateral pons, and rostral ventrolateral medulla. The role of these brain stem areas in mediating steady-state and reflex-induced changes in SNA and blood pressure is discussed. Despite the common appearance of rhythms in SNA, these oscillatory characteristics are often ignored; instead, it is common to simply quantify changes in the amount of SNA to make conclusions about the function of the sympathetic nervous system in mediating responses to a variety of stimuli. This review summarizes work that highlights the need to include an assessment of the changes in the frequency components of SNA in evaluating the cardiovascular responses to various manipulations as well as in determining the role of different brain regions in the neural control of the cardiovascular system.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3